July 2004 ## CO₂ Sequestration in Ocean-Planets? Didier Despois¹, Alain Léger², David Ehrenreich², Dimitri Mawet², Marc Ollivier², Christophe Sotin³, Franck Selsis⁴, and Tristan Guillot⁵ (Email: despois@obs.u-bordeaux1.fr) ¹Observatoire de Bordeaux, Floirac, France ²Institut d'Astrophysique Spatiale, CNRS, Université Paris-Sud, Orsay, France ³Laboratoire de Planétologie et Géodynamique, Université de Nantes, Nantes, France ⁴Centro de Astrobiología (CSIC/INTA), Instituto Nacional de Técnica Aeroespacial, Madrid, Spain ⁵Observatoire de la Côte d'Azur, Nice, France Ocean-Planets are a new family of possible planets in between the rocky terrestrial planets and the gaseous giants (Leger et al. 2004). They are of great potential interest for Exo/Astrobiology, due to their global ocean. They are candidates for detection by space missions such as Eddington, Kepler, and possibly COROT. CO₂ is considered an important minor constituent of these planets. We address the problem of the CO₂ abundance in the atmosphere, the ocean, and the underlying high-pressure ice mantle. We use an EOS for high pressure H₂O-CO₂ mixture to show that CO₂ demixion takes place at high pressure, which leads to CO₂ sequestration in the lower liquid and ice layers of the planet. This lowers appreciably the CO₂ atmospheric content and the corresponding greenhouse effect.